If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32j^2-200=0
a = 32; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·32·(-200)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*32}=\frac{-160}{64} =-2+1/2 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*32}=\frac{160}{64} =2+1/2 $
| x/2+2/5=3x/4+3 | | 4×+5y=18 | | 50=X+5*x | | 2m/5-m/3-4=0 | | 14/x=0.7 | | 2r÷3=6 | | 2m/5-m/3=4 | | (w3)3=–512 | | Y=17+5x | | 4/5*x=24 | | 4/5*x+9=33 | | 7x^-2=175 | | x-1/7=2 | | 2(−x+4)+5x−3= 11 | | x3+4 | | (3+y)(5y-8)=0 | | 16x+191/2*x-1/2*x=x-34 | | 6n+5÷4=5 | | 8a-36=-4 | | 2x+7÷3=7 | | 18/27=n/35 | | 120*x=160 | | 11x-3(4x-6)=29 | | 5+2(y-4)=28 | | p/4-8=-2 | | 3/4*x+4/5*x=2 | | 32/19=x/51 | | 12a-+6a= | | n^2=36^2 | | x^2+4x+7=(x+4) | | 5•6^3m=20 | | X^2+7x‐8=0 |